0 %

AI and the Cyber Security

Iniziamo subito togliendo ogni speranza a chi cerca una definizione univoca e condivisa della locuzione “intelligenza artificiale”.

Si tratta di un concetto che comprende un numero molto ampio di argomenti che afferiscono a differenti discipline, dalla neurologia all’informatica, dalla neurobiologia alla neurofisiologia (e in genere tutte le discipline che studiano il cervello umano) alla matematica e così via.

Per cui, più si cerca di darne una definizione scientifica omnicomprensiva più si è costretti a semplificarla. Per non tralasciare aspetti fondamentali a seconda del punto di vista preso in considerazione, resta una definizione apparentemente banale.

L’intelligenza artificiale trae la sua linfa dall’evoluzione di metodologie e algoritmi innovativi. Ed è su questi che ci focalizzeremo parlando qui, per esempio, di riconoscimento delle immagini e di realtà aumentata e virtuale e rimandando ad altri articoli che spiegano nel dettaglio machine learningdeep learningnatural language processing.

Tipi di Intelligenza Artificiale

Intelligenza artificiale o intelligenza aumentata? Può apparire strano, dopo aver parlato fino ad ora di intelligenza artificiale, porsi questa domanda, ma non è una domanda peregrina.

Come vedremo nella parte dedicata ai temi etici, l’intelligenza artificiale se da un lato apre grandi opportunità, dall’altro alza anche il sipario su scenari, per ora solo fantascientifici, ma sicuramente allarmanti di un mondo governato dalle macchine.

Intelligenza Artificiale Debole vs Forte

Il massimo livello raggiunto finora dall’Intelligenza Artificiale è quello di un ottimo studente, con una memoria poderosa, ma non del genio. Le macchine fino ad ora correlano ciò che hanno imparato. Da questi insegnamenti traggono nuove informazioni per simulare il comportamento umano, ma non hanno le illuminazioni geniali di un Einstein. Soprattutto non sviluppano proprie capacità cognitive, ma emulano quelle umane.

Sicuramente però possono supportare l’uomo mettendogli a disposizione correlazioni che una mente umana difficilmente potrebbe fare. Questo è possibile macinando la quantità infinita di dati oggi disponibili e contribuendo quindi ad “aumentare” l’intelligenza umana. Per questo in alcuni contesti si preferisce utilizzare il termine intelligenza aumentata invece di intelligenza artificiale.

Questo dibattito rispecchia quello che, nella comunità scientifica, si sostanzia nella differenza tra intelligenza artificiale debole (weak AI) e intelligenza artificiale forte (strong AI).

È al filosofo statunitense, nonché studioso del linguaggio, John Searle che dobbiamo l’esplicitazione di questa differenziazione.

Egli per la prima volta utilizza il termine “intelligenza artificiale forte” (dalla quale, secondo Searle, siamo ancora lontani) nell’articolo Menti, cervelli e programmi del 1980. Non è questa la sede per approfondire l’intenso dibattito che si sviluppa intorno a questa tematica, ma ci limitiamo a riportare sinteticamente le due definizioni.

Cos’è l’Intelligenza artificiale debole

Agisce e pensa come se avesse un cervello, ma non è intelligente, simula solo di esserlo. Per fornire la risposta a un problema indaga su casi simili, li confronta, elabora una serie di soluzioni e poi sceglie quella più razionale. Opta per la decisione che, sulla base dei dati analizzati, è più coerente simulando il comportamento umano.

L’AI debole non comprende totalmente i processi cognitivi umani, ma si occupa sostanzialmente di problem solving. Dà in pratica risposte a problemi sulla base di regole conosciute.

Cos’è l’Intelligenza artificiale forte

Ha capacità cognitive non distinguibili da quelle umane. Si collocano in questo ambito i “sistemi esperti” cioè software che riproducono prestazioni e conoscenze di persone esperte in un determinato ambito.

Il cuore di questi sistemi è il motore inferenziale ossia un algoritmo che, come la mente umana, da una proposizione assunta come vera passa a una seconda proposizione. Lo fa con logiche di tipo deduttivo (quando da un principio di carattere generale ne estrae uno o più di carattere particolare) o induttivo (quando avviene il contrario), la cui verità è derivata dal contenuto della prima.

La caratteristica distintiva di questi sistemi è l’analisi del linguaggio per comprenderne il significato. Infatti, senza comprensione del significato (ricordate quanto detto in tema memoria semantica?) non c’è vera intelligenza.

L’intelligenza artificiale generativa

  • Si concentra sulla creazione di nuovi contenuti (testi, immagini, audio, ecc.)
  • Utilizza modelli addestrati su grandi quantità di dati per generare output originali Esempi: GPT-4, DALL-E, Stable Diffusion, ecc.
  • L’Ai generativa non mira necessariamente a replicare l’intelligenza umana in modo completo

https://netprimex.com

One comment

Leave a Comment

Your email address will not be published. Required fields are marked *

*
*